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INVESTIGATION OF TRANSONIC UNSTEADY-STATE FLOW
IN THE PRESENCE OF PHASE TRANSFORMATIONS

G. A, Saltanov and R, A. Tkalenko UDC 533.6.011 +536.423.4

INTRODUCTION

Condensation of supersaturated vapor in a transonic flow can lead to an unsteady-state character of
the flow. This is due to the evolution of the latent heat of condensation, to the formation of a shock wave,
and to its interaction with the zone of evaporation. This phenomenon was first noted in [1, 2], in which it is
shown that the character of the motion of the shock wave depends on the parameters in the initial cross
section, the relative moisture content, and the contour of the nozzle. In [3] there were measured consider-
able pulsations of the parameters of the flow (with a frequency of 500~1000 Hz), arising with the flow of
moist air and pure water vapor in air. In [4] an approximate law of similarity was introduced for the dimen-
sionless frequency of an unsteady-state flow. In communications [5, 6] the phenomenon under consideration
was studied by the method of the inversion of the action; [7, 8] give the results of theoretical calculations
and an experimentally confirmed diagram, making it possible to determine the boundaries of the region of
instability of the flow. It has been found recently that the frequency of the pulsations of the pressure and
the density in a flow with the condensation of moist air can attain 6000 Hz. In the present work, a modifica~-
tion of the method of Godunov {10] is used to obtain a numerical solution of a system of equations describing
an unsteady-state quasi~one-dimensional flow with spontaneous condensation in the transonic part of a Laval
nozzle. Calculations of nonequilibrium unsteady~state flows in nozzles by the method of establishment have
also been made previously, for example, in [11, 12] (mixed flow in nozzles), [13] (flow taking account of
vibrational relaxation and nonequilibrium chemical reactions), and [14] ¢wo-phase flow in a nozzle, with
disagreement of the phases with respect to velocities and temperatures). The specific characteristic of
the present problem consists in the fact that, during the process of establishment with steady-state initial
and boundary conditions, the limiting state is not steady-~state; however, a known periodicity is observed,

1. Let us consider the unsteady-state quasi-one-dimensional flow of supersaturated vapor in a Laval
nozzle, without taking account of viscosity, thermal conductivity, or radiation. We assume that the velocities
of the phases are identical, and that the condensation is spontaneous. The dependence of the area of the
transverse cross section of the nozzle on the coordinate x, varying along the axis, is given by the function
Fx); here x=0 corresponds to the minimal cross section of the nozzle. Let p be the pressure, p the den-
sity of the mixture, u the velocity, and t the time; the parameters of the condensing phase have the super-
script zero. The basic equations of the conservation of mass, momentum, and energy canbe written in the form

9

a
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The enthalpy of the mixture h depends on the mass concentration of the vapor g and is determined
by the formula

7

h:y,—i

RT +(1—p)cT°, RT =L 1.2)

S~

where % is the adiabatic index of the vapor; T is the temperature; ¢
liquid phase; R is the gas constant,

is the specific heat capacity of the

We assume that the forming particles have a spherical form and that the rate of their growth r=
dr/dt does not depend on the radius r. In this case, the spontaneous condensation of the flowing vapor
is determined by the system of equations of [15, 16], for the purposes of the present work written in the
form

L (0FQy) + = (puFQy) = pFo, (b =0,1,2,3); (1.3)
0y = %r’f-{— k}Qh; p= —4—;—-9"93,
where ry is the radius of a nucleus; Qy are auxiliary functions, introduced in [15]; I is the rate of forma-

tion of the nuclei, which, in the present work, is determined by the Frenkel'~Zel'dovich formula [17].

For the rate of growth of a drop the Knudsen formula can be used,

= [p — (%)1/ * b (TO)]. (1.4)

T == —————
° (2RT)?

and, for determination of the temperature of the drop, the equation [16, 18]

70 2L »—1 T \1/2 p (T ro\2 p (T9] 79

where pg is the pressure of the saturated vapors above the flat surface of the duct; L is the heat of con-
densation; « and vy are the coefficients of condensation and thermal accomodation.

As has been shown by a comparison of the results of theoretical calculations with experimental data
[19], good agreement between the location of the region of a jump in the condensation and the distribution
of the static pressure along the flow lines is observed with the values ¢=0.04 and y=1, If into the power
exponent of the Frenkel'—Zel'dovich formula [17] for the rate of formation of the nuclei we introduce the
semiempirical coefficient n, good agreement between theory and experiment can also be attained with re~
spect to the dispersivity [6].

In the calculations it was assumed that «=0.04, y=1, and n=1.8.

The initial conditions were the following: with t=0 all the parameters were constant and equal to
their values in the initial cross section of the nozzle x =x; (with u=0); the pressure in the outlet cross
gection of the nozzle x =x) was equal to the pressure of the surrounding medium pg.

2. The system of equations (1.1)-(1.5) was solved in an electronic computer using a method {10]
based on the principle of establishment, without the evolution of shock waves. The whole nozzle was divided
into N sections, To the parameters at the mesh points there were assigned the indices 0, 1, 2,..., m,... N,
and, at the middles of the segments between mesh points with the coordinates xp, and xp, 44, the fractional
index m +1/2. For quantities corresponding to the moment of time t, this index was shifted downward,
and, for the moment of time t +At, upward. The calculating scheme, by which the values at the moment
of time t and the parameters at the boundary are used to find the values at the succeeding moment of time
t +At, was obtained by the integration of the left- and right-hand parts of the differential equations (1.1},
(1.3) along the contour of an elementary cell, followed by application of the theorem of the mean. The
following system of difference equations was obtained for determination of p, u, h, and Q.

i
m-— At
. lOm+% N Az F oy et [oul)mrs — (qu)m]’ 2.1)

1
m-5- A Py
(Pu) - o= (Pu)m+ | T A F ! ", [(p -+ pu‘“)m+1F1n—j~l - (P -+ puz)mFm] -+

. At "l+% , p u? '”"L%
N 377—(1’ PPl lo(r -2 +5)]"7 =

3
m" m,m+1
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Here Axy) =Xy 41" Xp» 2Fm, m+ = Fm * Fm+i- The remaining parameters are found from (1.2)~(1.5).

Formulas (2.1) are us~d to determine the parameters with fractional indices. Values with whole
indices are found using formulas for the decomposition of an arbitrary discontinuity [10], modified for
application to the nonequilibrium flow under consideration. The modification involved only methods for
determining the parameters €, characterizing the relaxation process, and the parameters at the bound-
ary (with x=x; and x=xy). Since the time required for the establishment of equilibrium with respect to
translational and rotational degrees of freedom, characterizing the thickness of the gas dynamic discon~
tinuities, is considerably less than the time of the relaxation process of mass transfer, we shall assume
that Qi does not change with a transition through the gasdynamic discontinuities. Thus, the values of the
parameters Q) with x =x;, will depend only on the sign of the velocity of the contact discontinuity Uy, at
this point. The conditions of a decomposition of the discontinuity for $2; can be written in the form

(Q)m = (Qk)m , with Un =0,
2
() = () oy with Unm < 0.

To determine the parameters at the boundaries (x=x, and x =xN) several additional cells are con-
nected to the nozzle on the left and the right, and we assume that the flow in these sections is isentropic.
By virtue of the statement of the problem, in the initial cross section of the nozzle, there is the known
right-hand Riemann invariant and the value of Sy=py,” ", and the left-hand invariant is calculated from
the parameters of the adjacent cell at the moment of time t. This permits calculating all the parameters
in the inlet cross section [11, 12]. An analogous method is used to determine the parameters in the outlet
cross section of the nozzle, with the difference that the roles of the left- and right-hand Riemann invari-
ants change places.

The nozzle was divided into 40-80 segments of different length. The minimal spacing Ax was so
selected that large gradients of the parameters p, u, p, Qi were to be expected (in the region of the mini-
mal cross section of the nozzle or in the presumed region of the appearance of gasdynamic discontinuities).
The Courant —Friedrichs —Levy criterion wasused for the stability of the solution [20].

3. The problem was solved in an M-222 digital computer. The pressure and temperature in the ini-
tial cross section of the nozzle xy/fx =—3.8 (Ix is the breadth of the minimal cross section) were the follow-
ing: py=1atm (abs.), T,=373°K. An investigation was made of the expansion of supersaturated watervapor
in three nozzles. The results for all the cases are shown in Fig. la-c.
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Figure 1a shows curves of the distribution of the pressure along the axis of the first nozzle at differ-
ent moments of time (the dashed curve corresponds to a flow without condensation). It can be seen that the
process is fully established and that, with t = 3.06 usec, there:is formed a stable shock wave, due to the
evolution of heat with condensation. Downstream from the shock wave there is a region of subsonic flow,
in which the supercooling is somewhat less than ahead of the shock wave; however, it ensures the further
growth of the forming nuclei. Such flow conditions with a stationary shock wave have been observed ex-
perimentally [6, 7].

Figure 1b shows the distribution of the pressure at different moments of time for the second nozzle
with a lesser degree of expansion with the same conditions in the initial cross section. It can be seen that
the process is not fully established: the intensity of the shock wave arising at first rises, as a result of
which it is displaced countercurrent, and then decreases, which brings about its displacement in the re-
verse direction and complete damping. After this, a new shock wave is formed and the process is repeated
cyclically, :

In the cases under consideration, the shock wave did not reach the minimal cross section of the nozzle;
therefore, a calculation was made for a nozzle with a still smaller degree of expansion, which permitted
extending the zone of condensation right up to the minimal cross section, Figure 1c shows the distribution
of the pressure for this case; the shock wave is displaced upstream from the minimal cross section of the
nozzle and is damped.

Let us consider the field of the flow immediately in the zone of condensation behind the shock wave
(Fig. 2). The heavy line denotes the front of the shock wave, and the thin solid lines are the characteristics
of the second family. Behind the shock wave, the flow is subsonic; however, as a result of the supply of
heat due to condensation it is accelerated to a sonic velocity, and then, as a result of an increase in the
degree of expansion of the nozzle, becomes supersonic. Thus, in addition to the usual sonic line in the
critical cross section of the nozzle, downstream there may exist a second sonic line (see Fig. 2, dashed
line).

The whole flow in the region of condensation can be divided into alternating compression and rare-
faction waves, In Fig. 2, these regions are separated by the characteristics of the second family, denoted
by a dashed-dot line. The interaction between the compression wave and the shock wave leads to an in-
crease in the intensity of the latter and to its countercurrent displacement. This partially eliminates the
intersection in the condensation zone, the supply of heat becomes less intense, and the region generating
a compression wave vanishes. After this, the shock wave starts to interact with the rarefaction wave. The
rate of displacement of the shock wave with respect to the nozzle decreases and becomes equal to zero.

At this moment, its intensity can be determined using known relationships for the calculation of steady-
state direct shock waves, with a given spacing of the Mach number of the oncoming flow. If the shock wave
has attained the minimal cross section of the nozzle, it starts to move downstream and is damped. If it
has passed through the minimal cross section, damping takes place with a simultaneous displacement up-
stream. A decrease in the intensity leads to an increase in the supersaturation in the condensation zone,
the supply of heat becomes more intense, and a compression wave is again formed, then going over info an
alternating shock wave., The process repeats itself cyclically.

It is of interest to note that the processes of the damping of the preceding shock wave and the forma-
tion of the succeeding one overlap in time. The succeeding shock wave originates downstream from the
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preceding, As a result, in the region of the flow between them, a third periodically appearing and vanish-
ing sonic line is formed (see Fig, 2, dashed lines).

If we consider a fixed cross section of the nozzle, then the parameters of the flow in it will vary with
a definite frequency. For example, the pulsations of the static pressure near the minimal cross section of
the nozzle attain 35-40%, and the pulsations of the Mach number about 20%. The whole cycle repeats itself
in approximately 2 psec, i.e., the frequency of the pulsations attains 500 Hz. The upper curve of Fig. 3
shows the dependence of the pressure on the time for the second nozzle in the cross section x/l*r= 0.835,

An unsteady-state character of the flow in the condensation zone can lead to pulsations of all the flow
parameters, including the mass flow rate and the specific momentum. Since in the first two nozzles the
shock wave does not reach the critical cross section, the mass flow rate of the gas remains constant. How-
ever, in the third nozzle investigated the shock wave is shifted into the subsonic part, as a result of which
there are pulsations of the mass flow rate. Just such an unsteady-state character was noted in [3, 4].
Figure 3 gives a curve of the change in the draft coefficient in the outlet cross section of the third nozzle.
The calculated Mach number at the outlet for a flow of water vapor without condensation was egual to 1.3.

In the experimental study of unsteady-state flows it is usual to use TOpler moving-picture photos,
obtained with operation of the moving-picture camera under recording conditions. As a result, the photos
are extended in time. Figure 4a gives a ToOpler moving-picture photo for the second nozzle. The same
figure shows the corresponding curve (Fig. 4b), obtained by calculation. In spite of a certain difference in
the frequency, the gualitative agreement between the experiments and the results of the calculations is
obvious.

Thus, with spontaneous condensation in the transonic part of a Laval nozzle, the following flow pic-
tures may be observed: a) a stationary shock wave is formed, the flow is fully established, and the mass
flow rate is determined from the condition of isentropic expansion; b) in the supersonic part of the nozzle,
shock waves are formed periodically and the flow is unsteady-state; however, the mass flow rate remains
unchanged; c) the periodically forming shock waves are shifted into the subsonic part of the nozzle, the
flow is unsteady~-state and is accompanied by periodic pulsations of all the gasdynamic parameters, in-
cluding the mass flow rate.

The author is grateful to A. N. Kraiko for his valuable advice with regard to the method of numerical
calculation and for his evaluation of the results.
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STATISTICAL CHARACTERISTICS OF THE DIEFUSION
OF A CHEMICALLY ACTIVE ADDITIVE
IN A TURBULENT MIXING ZONE

A. F. Kurbatskii UDC 532.517.4

In the article a numerical solution of the connected system of the equations of turbulent
transfer for the fields of the velocity and concentration of a chemically active additive is
used to calculate a number of the second moments of the concentration field in a flat mix-
ing zone. The system of transfer equations is derived from the equations for a common
function of the distribution of the fields of the pulsations of the velocity and the concentra~
tion [1] and is simplified in the approximation of the boundary layer. A closed form of the
transfer equations is obtained on the level of three moments, using the hypothesis of four
moments [2] and its generalized form for mixed moments of the field of the velocity and
the field of a passive scalar., The differential operator of the closed system of the equa-~
tions of turbulent transfer for the fields of the velocity and the concentration is found by

a method of closure not of the parabolic type but of a weakly hyperbolie type [3]. An im-
plicit difference scheme proposed in [4] is used for the numerical solution. The results
of the numerical solution are compared with the experimental data of [5].

1. System of Equations for the Moments of the Field

of the Concentration

The turbulent diffusion of a dynamically passive additive in a free inhomogeneous turbulent flow of an
incompressible liquid is considered in an Euler description. The dynamic passivity of the additive postu-
lates that the field of the velocity u (x ) does not undergo any appreciable effect from the side of the process
of turbulent diffusion of the additive. The additive can react chemically with the medium of the flow. The
chemical reaction under consideration can be assumed to be passive, which can be regarded as justified
for "weak" chemical reactions in the flow {taking place relatively slowly and quietly) and small concentra-
tions of the impurity. It is assumed that the fields of the pulsations of the velocity and concentration of the
additive can be described by a common distribution function, satisfying some "kinetic" equation [1]. The
equations for the moments of the field of the concentration in a free inhomogeneous turbulent flow are de-
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