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INTRODUCTION 

Condensation of supersaturated vapor in a transonic flow can lead to an unsteady-state character of 
the flow. This is due to the evolution of the latent heat of condensation, to the formation of a shock wave, 
and to its interaction with the zone of evaporation. This phenomenon was first noted in [1, 2], in which it is 
shown that the character of the motion of the shock wave depends on the parameters in the initial cross 
section, the relative moisture content, and the contour of the nozzle. In [3] there were measured consider- 
able ptflsations of the parameters of the flow (with a frequency of 500-1000 Hz), arising with the flow of 
moist air and pure water vapor in air. In [4] an approximate law of similarity was introduced for the dimen- 
sionless frequency of an unsteady-state flow. In communications [5, 6] the phenomenon under consideration 
was studied by the method of the inversion of the action; [7, 8] give the results of theoretical calculations 
and an experimentally confirmed diagram, making it possible to determine the boundaries of the .region of 
instability of the flow. It has been found recently that the frequency of the pulsations of the pressure and 
the density in a flow with the condensation of moist air can attain 6000 Hz. In the present work, a modifica- 
tion of the method of Godunov [I0] is used to obtain a numerical solution of a system of equations describing 
an unsteady-statequasi-one-dimensional flow with spontaneous condensation in the transonic part of a Laval 
nozzle. Calculations of nonequilibrium unsteady-state flows in nozzles by the method of establishment have 
also been made previously, for example, in [II, 12] (mixed flow in nozzles), [13] (flow taking account of 
vibrational relaxation and nonequilibrium chemical reactions), and [14] (two-phase flow in a nozzle, with 
disagreement of the phases with respect to velocities and temperatures). The specific characteristic of 
the present problem consists in the fact that, during the process of establishment with steady-state initial 
and boundary conditions, the limiting state is not steady-state; however, a known periodicity is observed. 

i. Let us consider the unsteady-state quasi-one-dimensional flow of supersaturated vapor in a Laval 
nozzle, without taking account of viscosity, thermal conductivity, or radiation. We assume that the velocities 
of the phases are identical, and that the condensation is spontaneous. The dependence of the area of the 
transverse cross section of the nozzle on the coordinate x, varying along the axis, is given by the function 
F(x); here x = 0 corresponds to the minimal cross section of the nozzle. Let p be the pressure, p the den- 
sity of the mixture, u the velocity, and t the time; the parameters of the condensing phase have the su0er- 
script zero. The basic equations of the conservation of mass, momentum, and energy can be written in the form 

o +~(,ouF) 0; 0-~ (pF)  = 

~--[-(9uF) + ~ [(p + pu ~) F] = p ~ ; 

--or oF h - -  7 + + ~ x  9uF h-,-' = 0 .  (1.1) 

Moscow. Trans la ted  f r o m  Zhurnal  Prikladnoi  MekhaniM i Tekhnieheskoi Fiziki, No. 6, pp. 42-48, 
N o v e m b e r - D e c e m b e r ,  1975. Original a r t i c l e  submit ted Sep tember  30, 1974. 

�9 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission of  the publisher. A copy of  this article is available from the publisher for $15.00. 

873 



The enthalpy of the mixture h depends on the mass  concentration of the vapor fl and is determined 
by the formula 

h =  _ ~ R T + ( l - ~ ) c o r  0, R T = ~ ,  (1.2) 

where ~ is the adiabatic index of the vapor; T is the tempera ture ;  c ~ is the specific heat capacity of the 
liquid phase; R is the gas constant.  

We assume that the forming par t ic les  have a spherical  form and that the rate of their  growth i'= 
d r /d t  does not depend on the radius r. In this ease, the spontaneous condensation of the flowing vapor 
is determined by the sys tem of equations of [15, 16], for  the purposes  of the present  work writ ten in the 
form 

+ = ( k  = 0, 1, 2, 3); (1.3) 

I r ~ 4 g  0 ~ c0h = -5-  * § k ~ ;  ~ = - -  T P ~'~' 

where r ,  is the radius of a nucleus; I2 k a re  auxil iary functions, introduced in [15]; I is the rate of forma-  
tion of the nuclei, which, in the present  work, is determined by the F r e n k e l ' - Z e P d o v i c h  formula [17]. 

For  the ra te  of growth of a drop the Knudsen formula can be used, 

pO(2~T) l i2[P_  [ T \i/2 (TO)], (1.4) 

and, for  determination of the t empera tu re  of the drop, the equation [16, 18] 

a ( ~  2LBT•176 1 7 -  t k ~ '  _ (~)~/o ~ ]  "- (l -- a) y ( ~  -- t) = 0, (1.5) 

where Ps is the p r e s s u r e  of the saturated vapors above the flat surface of the duct; L is the heat of con- 
densation; a and y are  the coefficients of condensation and thermal  accomodation. 

As has been shown by a compar ison of the resul ts  of theoret ical  calculations with experimental  data 
[19], good agreement  between the location of the region of a jump in the condensation and the distribution 
of the static p r e s s u r e  along the flow lines is observed with the values a=  0.04 and y= 1. If into the power 
exponent of the F r e n k e l ' - Z e l ' d o v i c h  formula [17] for the rate of formation of the nuclei we introduce the 
semiempir ica l  coefficient n, good agreement  between theory and experiment can also be attained with r e -  
spect to the dispersivi ty  [6]. 

In the calculations it was assumed that a=  0.04, y= 1, and n = 1.8. 

The initial conditions were the following: with t = 0 all the pa r ame te r s  were constant and equal to 
their  values in the initial c ross  section of the nozzle x=x  0 (with u =0); the p r e s s u r e  in the outlet c ross  
section of the nozzle x =x N was equal to the p r e s s u r e  of the surrounding medium Pa. 

2. The sys tem of equations (1.1)-(1.5) was solved in an electronic computer  using a method [10] 
based on the principle of establishment,  without the evolution of shock waves. The whole nozzle was divided 
into N sections.  To the pa rame te r s  at the mesh points there  were assigned the indices 0, 1, 2 . . . . .  m . . . .  N, 
and, at the middles of the segments  between mesh points with the coordinates x m and Xm+ 1, the fractional 
index m + 1/2. For  quantities corresponding to the moment of t ime t, this index was shifted downward, 
and, for  the moment of t ime t +At, upward. The calculating scheme, by which the values at the moment 
of t ime t and the pa rame te r s  at the boundary a re  used to find the values at the succeeding moment of t ime 
t +At, was obtained by the integration of the lef t-  and right-hand par ts  of the differential equations (1.1), 
(1.3) along the contour of an e lementary  cell, followed by application of the theorem of the mean. The 
following sys tem of difference equations was obtained for determination of p, u, h, and f~k: 

1 
m +  .--~ At  

P " = 9 ~ [(puF),,~+l -- (puF)m]; (2.1) 
m~--rf A x m F m , m +  1 

l :~t [(p -~ pu")m+l .... :-1 -- (P + pu2).~Fm] § (Pu)"+~ = (Pu)m+~ a~,.F ..... I-, ~ F 

:) [( ) ]  p r o + - 7 -  u ~ m§ 
At  - "  Pro+_ ; p h P -: ~ - = 

7 ,~Xmb, m,m+ 1 2 J P 
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- ' : 

--9- ~ Ax mF m,m4_t . 

! 
�9 At 

~ T  mF m,m+ l 

--(pUff~h)m]@ 5t [ m§ ] ( k = 0 , 1 , 2 , 3 ) .  WoO ~ + (p~h) 1 
m+-: L- 

Here  Ax m =Xm+~--x m, 2F m, m+~ = Fm + Fm+e  The remaining  p a r a m e t e r s  a r e  found f rom (1.2)- (1.5). 

F o r m u l a s  (2.1) a r e  used to d e t e r m i n e  the p a r a m e t e r s  with f rac t iona l  ind ices .  Values  with whole 
indices  a r e  found using fo rmulas  for  the decomposi t ion  of an arbitrary discont inui ty  [10], modified for  
appl ica t ion  to the nonequi l ibr ium flow under  cons idera t ion .  The modif ica t ion  involved only methods for  
de te rmin ing  the p a r a m e t e r s  a k, c h a r a c t e r i z i n g  the re laxa t ion  p r o c e s s ,  and the p a r a m e t e r s  at the bound- 
a ry  (with x = x  0 and X=XN). Since the t ime  r equ i r ed  for  the e s t ab l i shmen t  of equ i l i b r i um with r e s p e c t  to 
t r ans l a t i ona l  and ro ta t ional  deg ree s  of f reedom,  c h a r a c t e r i z i n g  the th ickness  of the gas dynamic d i scon-  
t inu i t ies ,  is cons ide rab ly  l e s s  than the t ime  of the re laxa t ion  p r o c e s s  of m a s s  t r a n s f e r ,  we shal l  a s sume  
that f~k does not change with a t r an s i t i on  through the gasdynamic  d i scont inu i t i es .  Thus, the values of the 
p a r a m e t e r s  f~kwith x =x m will  depend only on the s ign of the veloci ty  of the contact  discont inui ty  U m at 
this  point .  The condit ions of a decompos i t ion  of the d iscont inui ty  for  ~2 k can be wr i t t en  in the form 

(Qk)m = (-Qh) 1 with U m ~  O; 
m--7~ 

(~'h)7,, = (~ )  . ! with Um <[0. 

To de t e rmine  the p a r a m e t e r s  at the boundar ies  (x =x 0 and x =XN) s e v e r a l  addi t ional  ce l l s  a r e  con- 
nected to the nozzle  on the left  and the r ight ,  and we a s s u m e  that the flow in t hese  sec t ions  is  i s en t rop ic .  
By v i r tue  of the s t a t emen t  of the p r o b l e m ,  in the  in i t ia l  c r o s s  sec t ion  of the nozzle,  t he re  is  the known 
r igh t -hand  Riemann invar iant  and the value of S o =P0P0- ~,  and the le f t -hand invar ian t  is  ca lcu la ted  f rom 
the p a r a m e t e r s  of the adjacent  ce l l  at the moment  of t ime  t .  This p e r m i t s  ca lcu la t ing  al l  the p a r a m e t e r s  
in the inlet  c r o s s  sec t ion  [11, 12]. An analogous method is used to de t e rmine  the p a r a m e t e r s  in the outlet  
c r o s s  sec t ion  of the nozzle,  with the d i f ference  that  the ro les  of the l e f t -  and r ight -hand Riemann ~uvari- 
m]ts change p l a c e s .  

The nozzle  was divided into 40-80 segments  of d i f ferent  length. The min ima l  spacing Ax was so 
se lec ted  that  l a r g e  g rad ien t s  of the p a r a m e t e r s  p, u, p, ~k  were  to be expected (in the region of the min i -  
mal  c r o s s  sec t ion  of the nozzle  or  in the p r e s u m e d  region of the appea rance  of gasdynamic  d iscont inui t ies) .  
The C o u r a n t -  F r i e d r i c h s -  Levy c r i t e r i o n  was used for  the s tab i l i ty  of the solut ion [20]. 

3. The p rob l em was solved in an M-222 digi ta l  computer .  The p r e s s u r e  and t e m p e r a t u r e  in the in i -  
t ia l  c r o s s  sec t ion  of the nozzle x 0 / / ,  = - 3 . 8  ( l .  is the b read th  of the min imal  c r o s s  sect ion) were  the fol low- 
ing: P0 = 1 a im (abs.), T 0= 373~ An inves t iga t ion  was made of the expansion of s u p e r s a t u r a t e d  w a t e r v a p o r  
in t h r e e  nozz les .  The r e su l t s  for  al l  the e a s e s  a r e  shown in Fig.  l a - c .  
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Figure  l a  shows curves  of the d i s t r ibu t ion  of the p r e s s u r e  along the axis  of the f i r s t  nozzle  at  d i f fe r -  
ent moments  of t ime  (the dashed curve  c o r r e s p o n d s  to a flow without condensat ion) .  It can be seen  that the 
p r o c e s s  is fully e s t ab l i shed  and that,  with t ~ 3.06 /~sec, t h e r e . i s  fo rmed  a s tab le  shock wave, due to the 
evolution of heat with condensat ion.  Downst ream f rom the shock wave the re  is  a region of subsonic flow, 
in which the supercool ing  is somewhat  l e s s  than ahead of the shock wave; however,  it  ensu re s  the fu r the r  
growth of the forming  nuclei .  Such flow condit ions with a s t a t iona ry  shock wave have been observed  ex- 

p e r i m e n t a l l y  [6, 7]. 

F igure  lb  shows the d i s t r ibu t ion  of the p r e s s u r e  at  d i f ferent  moments  of t ime  for  the second nozzle  
with a l e s s e r  deg ree  of expansion with the s ame  condit ions in the in i t ia l  c r o s s  sect ion.  It can be seen that  
the p r o c e s s  is not fully e s t ab l i shed :  the in tens i ty  of the shock wave a r i s i ng  at f i r s t  r i s e s ,  as  a r e su l t  of 
which it is  d i sp laced  coun te rcu r ren t ,  and then d e c r e a s e s ,  which b r ings  about i ts d i sp lacement  in the r e -  
v e r s e  d i r ec t ion  and comple te  damping.  Af t e r  this ,  a new shock wave is fo rmed  and the p r o c e s s  is  repeated  
cyc l i ca l ly .  

In the ca ses  under cons idera t ion ,  the shock wave did not reach  the min imal  c r o s s  sect ion of the nozzle;  
t he re fo re ,  a ca lcu la t ion  was made  for  a nozzle  with a Still  s m a l l e r  deg ree  of expansion,  which pe rmi t t ed  
extending the zone of condensat ion r igh t  up to the min ima l  c r o s s  sect ion.  F igure  l c  shows the d is t r ibu t ion  
of the p r e s s u r e  fo r  th is  case;  the shock wave is  d i sp laced  u p s t r e a m  f rom the min imal  c r o s s  sec t ion  of the 

nozzle  and is  damped.  

Let us cons ide r  the f ie ld of the flow immed ia t e ly  in the zone of condensat ion behind the shock wave 
(Fig. 2). The heavy l ine denotes  the front  of the shock wave, and the thin sol id  l ines  a r e  the c h a r a c t e r i s t i c s  
of the second fami ly .  Behind the shock wave, the flow is subsonic;  however,  as a r e s u l t  of the supply of 
heat due to condensat ion i t  is  a c c e l e r a t e d  to a sonic veloci ty ,  and then, as a r e su l t  of an i n c r e a s e  in the 
deg ree  of expansion of the nozzle ,  becomes  supe r son ic .  Thus, in addi t ion to the usual  sonic l ine  in the 
c r i t i c a l  c r o s s  sec t ion  of the nozzle ,  downs t ream t h e r e  may  exis t  a second sonic l ine  (see Fig.  2, dashed 

l ine).  

The whole flow in the region of condensat ion can be divided into a l t e rna t ing  c o m p r e s s i o n  and r a r e -  
fact ion waves .  In Fig.  2, these  regions  a r e  s e p a r a t e d  by the c h a r a c t e r i s t i c s  of the second family,  denoted 
by a dashed-do t  l ine.  The in te rac t ion  between the c o m p r e s s i o n  wave and the shock wave leads  to an in-  
c r e a s e  in the in tens i ty  of the l a t t e r  and to i ts  coun t e r cu r r en t  d i sp lacement .  This p a r t i a l l y  e l imina tes  the 
in t e r sec t ion  in the condensat ion  zone, the supply of heat becomes  l e s s  intense,  and the region  genera t ing  
a c o m p r e s s i o n  wave van ishes .  Af te r  this ,  the shock wave s t a r t s  to i n t e rac t  with the r a r e f a c t i o n  wave. The 
r a t e  of d i sp l acemen t  of the shock wave with r e s p e c t  to the nozzle  d e c r e a s e s  and becomes  equal to zero .  
At this  moment ,  i ts  in tens i ty  can be de te rmined  using known r e l a t i onsh ip s  for  the ca lcu la t ion  of s t eady-  
s t a t e  d i r e c t  shock waves,  with a given spacing of the Mach number  of the oncoming flow. If the shock wave 
has a t ta ined the min ima l  c r o s s  sec t ion  of the nozzle ,  it  s t a r t s  to move downs t ream and is damped.  If it  
has p a s s e d  through the min ima l  c r o s s  sect ion,  damping takes  p lgce  with a s imul taneous  d i sp lacement  up- 
s t r e a m .  A d e c r e a s e  in the in tens i ty  l eads  to an i n c r e a s e  in the s u p e r s a t u r a t i o n  in the condensat ion zone, 
the supply of heat becomes  m o r e  intense,  and a c o m p r e s s i o n  wave is again formed,  then going over  into an 
a l t e rna t ing  shock wave. The p r o c e s s  r epea t s  i t se l f  cyc l i ca l ly .  

It is  of i n t e r e s t  to note that  the p r o c e s s e s  of the damping of the p reced ing  shock wave and the fo rma-  
tion of the succeeding  one over lap  in t ime .  The succeeding  shock wave o r ig ina tes  downs t ream f rom the 
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preceding .  As a resul t ,  in the region of the flow between them,  a th i rd  per iodica l ly  appear ing  and vanish-  
ing sonic l ine is fo rmed  (see Fig. 2, dashed l ines) .  

If  we cons ider  a fixed c r o s s  sec t ion  of the nozzle,  then the p a r a m e t e r s  of the flow in it will va ry  with 
a definite f requency.  Fo r  example,  the pulsa t ions  of the s ta t ic  p r e s s u r e  n e a r  the min imal  c r o s s  sect ion of 
the nozzle  at tain 35-40~0, and the pulsa t ions  of the Mach number  about 207o. The whole cycle  repea t s  i tself  
in approx ima te ly  2 #see,  i .e. ,  the f requency  of the pulsat ions  at tains 500 Hz. The upper  cu rve  of Fig. 3 
shows the dependence of the p r e s s u r e  on the t ime  for  the second nozzle  in the c r o s s  sect ion x / l .  = 0.835. 

An uns t eady- s t a t e  c h a r a c t e r  of the flow in the condensation zone can lead to pulsa t ions  of all the flow 
p a r a m e t e r s ,  including the m a s s  flow r a t e  and the specif ic  momen tum.  Since in the f i r s t  two nozzles  the 
shock wave does not reach  the c r i t i ca l  c r o s s  section,  the m a s s  flow ra te  of the gas r ema ins  constant .  How- 
ever ,  in the th i rd  nozzle invest igated the shock wave is shifted into the subsonic par t ,  as a resul t  of which 
the re  a r e  pulsat ions of the m a s s  flow ra te .  Jus t  such an uns t eady- s t a t e  c h a r a c t e r  was noted in [3, 4]. 
Figure  3 gives a cu rve  of the change in the draf t  coefficient  in the outlet c ro s s  sect ion of the th i rd  nozzle.  
The calculated Mach number  at the outlet for  a flow of wa te r  vapor  without condensat ion was equal to 1.3. 

In the exper imenta l  study of uns t eady- s t a t e  flows it is usual to use  T~ipler moving-p ic tu re  photos, 
obtained with opera t ion  of the mov ing -p i c tu re  c a m e r a  under record ing  conditions. As a resul t ,  the photos 
a re  extended in t ime .  Figure  4a gives  a TSpler  moving-p ic tu re  photo for  the second nozzle.  The s ame  
f igure  shows the cor responding  curve  (Fig. 4b), obtained by calculat ion.  In spi te  of a ce r ta in  difference in 
the f requency,  the qual i ta t ive a g r e e m e n t  between the exper imen t s  and the resu l t s  of the calculat ions is 
obvious.  

Thus, with spontaneous condensat ion in the t ransonic  pa r t  of a Laval  nozzle,  the following flow p ic -  
t u re s  may  be observed:  a) a s t a t ionary  shock wave is fo rmed,  the flow is fully es tabl ished,  and the m a s s  
flow r a t e  is de te rmined  f r o m  the condition of i sen t ropic  expansion; b) in the superson ic  pa r t  of the nozzle,  
shock waves  a r e  fo rmed  per iod ica l ly  and the flew is uns teady-s ta te ;  however,  the m a s s  flow r a t e  r e m a i n s  
unchanged; c) the per iod ica l ly  forming shock waves a re  shifted into the subsonic pa r t  of the nozzle,  the 
flow is uns t eady- s t a t e  and is accompanied  by per iodic  pulsat ions of all the gasdynamic  p a r a m e t e r s ,  in- 
cluding the m a s s  flow ra t e .  

The author  is gra teful  to A. N. Kra iko  fo r  his valuable advice with r ega rd  to the method of numer ica l  
calculat ion and for  his evaluation of the resu l t s .  
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S T A T I S T I C A L  C H A R A C T E R I S T I C S  O F  T H E  

O F  A C H E M I C A L L Y  A C T I V E  A D D I T I V E  

IN A T U R B U L E N T  M I X I N G  Z O N E  

A. F. K u r b a t s k i i  

DIEFUSION 

UDC 532.517.4 

In the a r t i c l e  a numer i ca l  solution of the connected s y s t e m  of the equations of turbulent  
t r a n s f e r  fo r  the f ields of the veloci ty  and concentra t ion  of a chemica l ly  act ive  addit ive is 
used to calculate  a num ber  of the second momen t s  of the concentra t ion  field in a fiat  m ix -  
ing zone. The s y s t e m  of t r a n s f e r  equations iS der ived f r o m  the equations for  a common 
function of the dis t r ibut ion of the f ields of the pulsat ions  of the veloci ty  and the concen t ra -  
tion [1] and is s impl i f ied in the approximat ion  of the boundary l aye r .  A closed f o r m  of the 
t r a n s f e r  equations is obtained on the level  of t h ree  moments ,  using the hypothesis  of four  
momen t s  [2] and i ts  genera l i zed  f o r m  for  mixed momen t s  of the field of the veloci ty  and 
the field of a pas s ive  s ca l a r .  The different ia l  ope ra to r  of the closed s y s t e m  of the equa- 
t ions of turbulent  t r a n s f e r  for  the f ields of the veloci ty  and the concentra t ion is found by 
a method of c losure  not of the pa rabo l ic  type but of a weakly hyperbol ic  type [3]. An i m -  
pl ici t  d i f ference  scheme  proposed  in [4] is used for  the numer i ca l  solution. The resu l t s  
of the numer i ca l  solution a r e  compared  with the exper imenta l  data of [5]. 

1. S y s t e m  o f  E q u a t i o n s  f o r  t h e  M o m e n t s  o f  t h e  F i e l d  

o f  t h e  C o n c e n t r a t i o n  

The turbulent  diffusion of a dynamical ly  pa s s ive  additive in a f r ee  inhomogeneous turbulent  flow of an 
i ncompres s ib l e  liquid is cons idered  in an Euler  descr ipt ion.  The dynamic pass iv i ty  of the additive pos tu-  
l a tes  that  the field of the veloci ty  u (x) does not undergo any apprec iab le  effect  f r o m  the side of the p r o c e s s  
of turbulent  diffusion of the addit ive.  The addit ive can r eac t  chemica l ly  with the med ium of the flow. The 
chemica l  reac t ion  Under cons idera t ion  can be a s sumed  to be pass ive ,  which can be regarded  as justif ied 
fo r  "weak" chemica l  reac t ions  in the  flow {taking p lace  re la t ive ly  slowly and quietly) and smal l  concen t ra -  
t ions of the impur i ty .  It is a s sumed  that  the f ields of the pulsat ions of the veloci ty  and concentra t ion of the 
additive can be descr ibed  by a common dis t r ibut ion function, sa t i s fying some  "kinetic" equation [1]. The 
equations for  the momen t s  of the field of the concentra t ion  in a f r ee  [nhomogeneous turbulent  flow a r e  de- 

Novos ib i rsk .  Trans la ted  f r o m  Zhurnal  Pri ldadnoi  Mekhaniki i Tekhnicheskoi  Fiziki,  No. 6, pp. 48- 
59, N o v e m b e r - D e c e m b e r ,  1975. Original a r t i c l e  submit ted October  23, 1974. 

�9 76 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, mierofilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

878 


